Formules pour l’IFR (4): anticipation de virage pour intercepter un axe

Je souhaite rejoindre l’ILS pour la piste 25, axé sur 250°.
Ma route actuelle, donnée par mon cap corrigé du vent, est 340°.
Actuellement mon ADF m’indique que la route pour rejoindre l’aéroport est au 270°. Je suis donc au sud de l’axe ILS.
Il y a 40 secondes, sur la même route, mon ADF m’indiquait 280°.
Quand dois-je initier mon virage à gauche pour me trouver sur l’axe de l’ILS en sortie de virage?
La première formule que nous allons voir dans cet article permet de déterminer par un calcul mental très simple que je suis à 4 minutes de l’aéroport.
La deuxième formule que nous allons voir permet, aussi par un calcul mental très simple, de déterminer que si j’initie un virage à gauche au taux 1 lorsque mon ADF indiquera que je suis à 5° de l’axe, soit sur un QDM 255°, je serai parfaitement aligné sur l’axe en sortie de virage. Notez que l’aiguille de mon localizer ne commencera à donner une indication précise que lorsque je serai à 2½° de l’axe: si j’attends ce moment pour virer, il sera trop tard pour m’aligner proprement.

Distance à une balise
Si on parcourt α degrés d’un arc de cercle de rayon r centré sur une balise, la distance parcourue est {{D}=\frac{\alpha \, \pi \, r}{180 }}.
On a donc {{r}=\frac{D}{\alpha }.\frac{180}{\pi }}
Divisons les deux membres par la vitesse sol v, est faisons l’approximation habituelle {\pi \simeq 3}, ou encore {\frac{180}{\pi}\simeq 60}, on obtient alors
{\frac{r}{v}=60\frac{\frac{D}{v}}{\alpha}}
{\frac{r}{v}} est la durée T qu’on mettrait pour rejoindre la balise, et {\frac{D}{v}} est la durée t pour parcourir l’arc de cercle.
On peut donc conclure que si on parcourt α degrés d’un arc de cercle centré sur une balise en t secondes, la durée pour rejoindre la balise est {\textbf{T=}\frac{\textbf{t}}{\mathbf{\alpha}}} minutes
Exemple
Je parcours 10° en 30 secondes sur un arc centré sur une balise, il me faut 30/10=3 minutes pour rejoindre la balise.

Anticipations de virage
Cette partie est très importante pour être à l’aise en évolution IFR. Vous devrez faire un petit effort pour bien comprendre, mais vous serez récompensés par une plus grande aisance lors des exercices IFR.
Je souhaite rejoindre une balise radio électrique sur un axe, par exemple un VOR sur l’axe 250°. Mon but sera atteint quand je serai sur une route à 250° qui me conduira à la verticale de la balise.
Je saurai que je suis correctement positionné
1- en voyant l’aiguille de mon VOR centrée avec l’OBS sur 250°,
2-l’affichage TO,
3-et en ayant une route au 250°, c’est à dire un cap qui, corrigé de la dérive, donne une route au 250°.
Il faut les trois conditions, demandez vous pourquoi.

Je rejoins l’axe sous un certain angle appelé angle d’interception i. Par exemple 30° (avec une route au 220° si je viens du nord, ou au 270° si je viens du sud), mais il se peut ce soit davantage, voire au delà de 90°.
Je ne connais pas la distance à la balise, mais mon HSI me donne aussi le QDM de la balise.
Comment savoir à quel QDM je dois commencer à virer vers 250° au taux 1 pour tomber pile sur l’axe? Autrement dit quel est l’angle d’anticipation α défini comme l’écart entre le QDM auquel je commence à virer et l’axe affiché sur l’OBS?
Je suppose que je connais la durée T pour rejoindre la balise (en minutes), par exemple grâce à la méthode exposée plus haut. Si on note d la distance à la balise et r le rayon du virage exécuté pour rejoindre l’axe, on peut poser d sin α = r (1 – cos i), ou encore {\alpha= \arcsin \frac{r( 1-\cos \, i)} {d}}. En remplaçant d par le produit de la durée T et de la vitesse v, et r par { \frac{v} { \pi}}, sa valeur trouvée dans un précédent article, la vitesse se simplifie et on trouve (A){\alpha= \arcsin \frac{ 1-\cos \, i} { \pi \ T }}

Vous connaissez probablement déjà la formule {\sin x \simeq \frac{x} {60}}, avec x exprimé en degrés, qui consiste à approcher le sinus par sa corde à 30°. Cette formule approchée donne des valeurs exactes pour les angles 0° et 30°, et des valeurs très précises entre 0° et 30°. Pour notre calcul, nous allons approcher le sinus par la formule {\sin x \simeq \frac{x} {20\pi } \simeq \frac{x} {63}}, ou encore { {\arcsin x } \simeq {20\pi } {x}}, formule qui approche le sinus par sa corde à environ 42¼°. L’erreur ne dépasse 1½° qu’au delà d’un sinus de ¾, soit environ 50°. Dans la plupart des cas, l’angle d’anticipation sera très largement inférieur à 50°, dans la vie courante du pilote il dépasse rarement 10°, l’approximation est donc pleinement justifiée.
L’intérêt de cette approximation est qu’elle permet de simplifier considérablement la formule (A) qui devient (B) {\alpha \simeq \frac{ 20 (1-\cos \, i)} { \ T }}

Poursuivons en approchant la formule { 1-\cos i} par sa corde entre les points 60° et 120°:  {1-\cos \, i \simeq \frac{ i} {60}-\frac{1} {2} }. Cette formule donne des valeurs exactes pour 60°, 90° et 120°. L’erreur de cette approximation ne dépasse pas ½° entre 60° et 120°. À 45° et 135° l’erreur est de 4°, mais l’approximation diverge fortement en deçà de 45° et au delà de 135°.
On arrive alors à la formule suivante, valable pour des angles d’interception supérieurs à 45° et inférieurs à 135°.
(C) {\alpha\simeq \frac{ \frac{i}{3}-10} { \ T }}

Formules donnant l’angle d’anticipation en fonction de la durée T pour rejoindre la station et de l’angle i d’interception

Angle d’interception i (B)
Formule approchée {\alpha\simeq \frac{{ 20} (1-\cos \, i)} {\ T }}
(C)
Formule approchée {\alpha \simeq \frac{\frac{i}{3}-10} { \ T }}
Formule approchée donnée par les manuels
30°{\frac{3} {T}}{0}{\frac{3} {T}}
45°{\frac{6} {T}}{\frac{5} {T}}{\frac{6} {T}}
60°{\frac{10} {T}}{\frac{10} {T}}{\frac{10} {T}}
75°{\frac{15} {T}}{\frac{15} {T}}
90°{\frac{20} {T}}{\frac{20} {T}}{\frac{20} {T}}
105°{\frac{25} {T}}{\frac{25} {T}}
120°{\frac{30} {T}}{\frac{30} {T}}{\frac{30} {T}}
135°{\frac{34} {T}}{\frac{35} {T}}
150°{\frac{37} {T}}{\frac{40} {T}}
165°{\frac{39} {T}}{\frac{45} {T}}
180°{\frac{40} {T}}{\frac{50} {T}}{\frac{40} {T}}

On constate que les manuels proposent des formules sérieuses, et que notre formule (C) ne doit pas être utilisée pour des angles d’anticipation inférieurs à 50°, ni supérieurs à 135°, ainsi que nous l’avons annoncé plus haut.
En pratique, dans la vie de tous les jours du pilote, l’angle est assez faible.
On a vu dans l’exemple en tête de cet article qu’il fallait une anticipation à 5° pour un angle d’interception à 90° lorsqu’on est à 4mn de la balise. Pour une interception à 30°, il aurait fallu moins d’un degré d’anticipation, ça parait faible, mais c’est entre 1 et 2 points de localizer, ce n’est donc pas négligeable.

Enfin, notre tableau n’est valable que pour des virages au taux 1! Dès que nous volerons sur des avions plus sérieux que nos avions école, qui voleront si vite qu’ils ne pourront conserver le taux 1, il faudra les abandonner. Si vous virez au taux ½, ce que font parfois les pilotes automatiques lorsque le taux 1 fait dépasser 25° d’inclinaison, il suffit de doubler l’angle d’anticipation, mais si vous virez à un angle d’inclinaison déterminé, par exemple 25° ou 30°, alors il faudra établir une autre formule

Quelques formules pour l’IFR (3)

Dans la partie relative à l’anticipation des virages fly-by de cet article, après avoir établi la formule
{D =(\frac{i}{100}- {0.3})\frac{V}{100}},
je finissais en écrivant
On voit que l’approximation n’est valable qu’entre 60° et 120°, ce qui n’est pas trop gênant puisque:
– à moins de 60°, on anticipera en général du minimum lisible sur nos instruments, soit 0.1NM;

En fait c’est gênant pour des avions qui évoluent plus vite que les 90kt de notre Cessna 172 pendant les exercices de procédure en double commande. Les procédures IFR se pratiquent, lorsqu’on n’est plus à l’école, à plus grande vitesse et le contrôle vous demandera régulièrement de garder les 120kt aussi longtemps que possible sur un Cessna 172, et la quasi-totalité des autres avions IFR voleront bien plus vite.
30° est un angle d’interception courant pour les procédures GNSS. A 120kt il faut 0.2NM d’anticipation, à 200kt 0.3NM, bien au dessus des 0.1NM que je suggérais dans mon article précédent, et surtout s’il s’agit d’intercepter la finale, ce n’est pas le moment de dépasser l’axe!
J’ai donc cherché une formule plus adaptée au problème.
J’avais établi la formule de la distance d’anticipation (en NM pour une vitesse exprimée en kt)
{D =\frac{V}{60 \, \pi} \tan\frac{i}{2}}
La durée d’anticipation en secondes se déduit cette formule
{T =\frac{3600}{60 \, \pi} \tan\frac{i}{2}=\frac{60}{\pi} \tan\frac{i}{2}}
La formule ne dépend plus de la vitesse, c’est déjà une simplification.
En prenant pour approximation la corde de cette fonction pour un angle d’anticipation de 80°, on trouve que l’anticipation en secondes d’un virage fly-by est voisine de deux dixièmes de l’angle en degrés.
{T \simeq\frac{2}{10} i}
Quelle que soit votre vitesse, l’anticipation d’une interception à 30° doit être ainsi de 6 secondes.
Comme la durée jusqu’au prochain point est en général donné directement par votre GPS, cette formule est très facile à utiliser lors de procédures PBN. Si vous suivez une procédure classique, vous devez connaître votre temps au prochain point si vous appliquez la méthode qu’on vous a, j’espère, enseignée pendant votre apprentissage de l’IFR.
L’erreur ne dépasse pas une seconde entre 0 et 90°. Au delà de 90° cette approximation ne doit plus être utilisée. La fonction tangente étant divergente, il n’est pas possible d’envisager une approximation linéaire pour des angles significativement supérieurs à 90°

La formule établie plus haut est le fruit d’une approche purement géométrique, un instructeur expérimenté m’a suggéré une approche plus intuitive: au taux 1, je vire de 3° par seconde. Le temps pour un virage de 30° par exemple sera donc de 30/3=10 secondes, et par conséquent mon anticipation doit être de de la moitié, soit 5 secondes. Sa serait donc {T \simeq\frac{i}{6} }
Cette méthode revient à assimiler l’angle à sa tangente, ce qui n’est pas loin de la vérité tant que l’angle est petit.
En termes mathématiques, on arrive à cette formule en assimilant la fonction tangente à sa … tangente au point d’angle nul.
{\tan i \simeq \frac{\pi i}{180}}
{T =\frac{60}{\pi} \tan\frac{i}{2}\simeq\frac{60}{\pi}\frac{\pi \frac{i}{2}}{180}=\frac{i}{6}}

La formule de cet instructeur expérimenté n’est valable que pour les angles pas trop importants. Pour 90°, sa formule donne 15 secondes d’anticipation, la mienne donne 18 secondes, et la formule exacte 19 secondes. Avec une approche purement intuitive et de bon sens, on peut trouver des approximations opérationnelles sans connaître l’algèbre, mais la formule que je propose est à la fois plus simple et plus précise.

Quelques formules pour l’IFR (2)

Vous trouverez dans le tableau ci-dessous des formules de calcul mental démontrées précédemment pour les premières, et démontrées dans la suite pour la dernière. Les distances sont en milles marins, les vitesses en noeuds, et les angles en degrés

Pour calculer Formule Plage d’utilisation Exemple
Inclinaison en ° pour virer au taux 1 {\frac{15 }{100} V } Vitesse jusqu’à 200kt; inclinaison jusqu’à 30° Pour 140kt, l’inclinaison fait 21° = 140 x 15/100
Rayon de virage au taux 1 {\frac{V }{200} } Pas de limite en pratique (erreur<0.1NM si V<330kt) Pour 140kt, le rayon de virage fait 0,7 NM =140/200
Rayon de virage à 30° d’inclinaison {\frac{V }{100} - 1 } Vitesse comprise entre 140kt et 250 kt, Rayon de virage compris entre 0,4 NM et 1,5 NM Pour 140kt, le rayon de virage fait 0,4 NM = 140/100-1
Rayon de virage à 25° d’inclinaison Majorer du ¼ le résultat obtenu pour 30° d’inclinaison Vitesse comprise entre 140kt et 260 kt, Rayon de virage compris entre 0,5 NM et 2,0 NM Pour 180kt, le rayon de virage fait 1 NM: 180/100-1=0,8 ; 0,8 /4 = 0,2 ; 0,8 + 0,2 = 1
Anticipation d’une altération de route Fly-by de i° en virant au taux 1, à la vitesse V(kt) Anticiper le virage de {D =(\frac{i}{100}- {0.3})\frac{V}{100}} NM Altération de route comprise entre 60° et 120° Pour 70° d’altération de route à 150kt, commencer à virer 0.6NM avant le point: 70/100-0.3=0.4 ; 0.4 x 1.5 = 0.6

Nous utilisons dans cet article les mêmes notations que pour mon premier article sur les formules utiles en IFR.
Anticipation d’un virage Fly By

Si ALPHA est matérialisé par une balise NDB, ou par un VOR non associé à un DME, et que le GPS n’est pas encore inventé, la seule façon de suivre la trajectoire est de survoler la balise, et d’initier le virage à droite une fois cette balise survolée. C’est la trajectoire Fly-over. Si on connaît sa distance à la balise ALPHA, par un DME ou un GPS par exemple, on peut envisager la trajectoire Fly-by, qui prend moins d’espace, et qui donc est en général imposée pour les procédures modernes.
A quelle distance D du point ALPHA dois-je commencer à virer pour suivre la trajectoire Fly-by, si l’altération de route est de i degrés ?

Si R est mon rayon de virage, une construction géométrique simple montre que la distance est {D =R \tan\frac{i}{2}}

Pour un virage au taux 1 d’un aéronef volant à la vitesse sol V exprimée en nœuds, en utilisant la formule établie précédemment, la distance sera {D =\frac{V}{60 \, \pi} \tan\frac{i}{2}}

En prenant la corde de cette fonction de i entre i=60° et i=120°, on trouve l’approximation linéaire suivante {D =(\frac{i}{100}- {0.3})\frac{V}{100}}

Examinons la pertinence de notre approximation, pour V= 100kt

Altération de route i en degrés Distance exacte à 10-2 près en NM Valeur approchée {\frac{V}{200}}
30° 0.14 0.00
60° 0.31 0.30
90° 0.53 0.60 0.50
120° 0.92 0.90
150° 1.98 1.20

L’anticipation à 90° est égale au rayon de virage ( {D =R \tan\frac{90}{2}}=R), rayon pour lequel nous avons établi précédemment la formule {R=\frac{V }{200} }. Notre approximation précédente donnait 0.50, celle d’aujourd’hui 0.60, la vraie valeur est proche de 0.53, nos deux approximations sont satisfaisantes pour l’usage que nous en ferons.

On voit que l’approximation n’est valable qu’entre 60° et 120°, ce qui n’est pas trop gênant puisque:
– à moins de 60°, on anticipera en général du minimum lisible sur nos instruments, soit 0.1NM;
– les normes relatives à la constructions des procédures IFR interdisent en général de prévoir des virages Fly-by à plus de 120°.
EDIT: voir l’article 3 de notre série « quelques formules pour l’IFR »

Quelques formules pour l’IFR (1)

Dans cet article, vous trouverez quelques précisions souvent mal connues, et des démonstrations de formules, formules qui sont en général exposées mais jamais démontrées dans les manuels. J’emploie parfois l’abréviation anglaise NM, nautical mile pour désigner le mille marin de 1852 m.

Vous trouverez dans le tableau ci-dessous des formules de calcul mental démontrées dans la suite. Les distances sont en milles marins, les vitesses en noeuds, et les inclinaisons en degrés

Pour calculer Formule Plage d’utilisation Exemple
Inclinaison en ° pour virer au taux 1 {\frac{15 }{100} V } Vitesse jusqu’à 200kt; inclinaison jusqu’à 30° Pour 140kt, l’inclinaison fait 21° = 140 x 15/100
Rayon de virage au taux 1 {\frac{V }{200} } Pas de limite en pratique (erreur<0.1NM si V<330kt) Pour 140kt, le rayon de virage fait 0,7 NM =140/200
Rayon de virage à 30° d’inclinaison {\frac{V }{100} - 1 } Vitesse comprise entre 140kt et 250 kt, Rayon de virage compris entre 0,4 NM et 1,5 NM Pour 140kt, le rayon de virage fait 0,4 NM = 140/100-1
Rayon de virage à 25° d’inclinaison Majorer du ¼ le résultat obtenu pour 30° d’inclinaison Vitesse comprise entre 140kt et 260 kt, Rayon de virage compris entre 0,5 NM et 2,0 NM Pour 180kt, le rayon de virage fait 1 NM: 180/100-1=0,8 ; 0,8 /4 = 0,2 ; 0,8 + 0,2 = 1

Facteur de charge n

Si votre bille est centrée pendant un virage d’inclinaison α en palier, la portance équilibrera le poids apparent, le schéma permet de voir que le facteur de charge est
n={\frac{1}{\cos \alpha}}
Des valeurs remarquables sont

Inclinaison Facteur de charge Augmentation du poids apparent
25° 1.10 10%
30° 1.15 15%
45° 1.41 41%
60° 2.00 100%

Rayon de virage R en fonction de l’inclinaison
L’accélération latérale en virage est égale à {\frac{V^{2}}{R}}, R étant le rayon de virage et V la vitesse propre, résultat dont vous trouverez la démonstration dans n’importe quel manuel traitant de cinématique.
La force latérale est, comme on le voit sur le schéma, égale au produit du poids par la tangente de l’inclinaison, l’accélération s’obtient en divisant la force par la masse, en application du principe de la dynamique. On a donc {\frac{V^2}{R}=g \,\tan \alpha}
soit {{R}=\frac{V^2}{g \,\tan \alpha }}
Il faut veiller aux unités pour passer à l’application numérique.
Si la vitesse est en nœuds, le rayon en milles marins et g en m.s-2, la formule devient {{1852 R}=\frac{{(\frac{1852 V}{3600})^2 } }{g \,\tan \alpha }} soit {{R}=\frac{{1852 (\frac{ V}{3600})^2 } }{g \,\tan \alpha }=\frac{1}{\tan \alpha } (\frac{V}{3600 \, \sqrt \frac{g}{1852 } })^2 \simeq \frac{1}{\tan \alpha } (\frac{V}{262})^2}
Cette formule est peu connue, et il faut bien le dire a peu d’intérêt pratique en vol puisqu’il n’est pas évident d’élever mentalement au carré. On voit qu’à 262kt, le rayon de virage est égal à \frac{1}{\tan \alpha }, soit 1NM pour 45° d’inclinaison.
À 30° d’inclinaison la formule devient {{R}=\frac{1}{\tan 30 } (\frac{V}{262})^2=\sqrt 3 (\frac{V}{262})^2= (\frac{V}{199})^2 }, soit un rayon de 1.6 NM pour un virage à 250kt.
En prenant {{R}=(\frac{V}{200})^2 } au lieu de {{R}=(\frac{V}{199})^2 }, et en approchant la parabole {{R}=(\frac{V}{200})^2 } par sa tangente au point d’abscisse 200kt et d’ordonnée 1NM, on trouve une règle facile à utiliser en vol: {R= \frac{V}{100}-1}
Par exemple, pour 250kt, cette formule simplifiée donne un rayon de virage de 2.5-1= 1.5 NM, pour une valeur réelle de l’ordre de de 1.58 NM, ce qui est une précision largement suffisante.
Cette formule peut être utilisée entre 140kt et 250kt, plage pour laquelle la précision est supérieure à un dixième de mille marin. La formule approchée étant linéaire pour une formule exacte quadratique, l’erreur augmente significativement en dehors de cette plage.
Enfin, la tangente de 30° étant supérieure d’environ 25% à la tangente de 25°, il suffit de majorer d’un quart le rayon trouvé pour 30° pour obtenir le rayon d’un virage à 25° d’inclinaison.

Le taux de virage
Le taux de virage est défini comme le nombre de demi-tours par minute d’un aéronef en virage en palier. Au taux 1, l’avion fait un demi-tour, soit 180°, en une minute, ou encore 3° par seconde.

Quelle inclinaison α pour un virage au taux 1?
Un avion en virage de rayon R devra parcourir une distance π R pour faire un demi tour, distance qui sera parcourue en une durée {\frac{\pi R}{V}} si l’avion vole à la vitesse propre V.
Remplaçons R par sa valeur {\frac{V^2}{g \,\tan \alpha }} trouvée au paragraphe relatif au rayon de virage, on trouve {\frac{\pi V}{g \,\tan \alpha }}= 1mn, soit {\tan \alpha= \frac{\pi}{g \, 1mn } V}.
Si la vitesse est en nœuds et l’accélération de la pesanteur en m.s-2, l’équation s’écrit {\tan \alpha= \frac{1852 \pi }{60 . 3600\,g }V}
soit { \alpha= \arctan \frac{1852 \pi }{60 . 3600\,g }V \simeq \arctan \frac{0.157 \pi }{180}V}
Pour les petits angles, on peut assimiler la tangente à l’angle, ce qui donnerait α=0.157 V. Mais dans le cas qui nous concerne, il vaut mieux assimiler la fonction à sa corde en un point d’utilisation usuel. À 140kt, la formule exacte donne 21° d’inclinaison, soit 15% de la vitesse. En prenant
α (en degrés) = 0,15 V (en noeuds), on obtient donc une valeur exacte pour 140kt, et une valeur approchée pour les autres vitesses. C’est cette formule qui figure dans tous les manuels.
Elle est remarquablement précise: l’écart entre le résultat de la formule simplifiée et la réalité est inférieur à ½ degré d’inclinaison jusqu’à 25° d’inclinaison, ce qui correspond à 170kt , et dépasse à peine 1° pour 30° d’inclinaison, ce qui correspond à 210kt.
On pourra utiliser cette formule chaque fois qu’on devra effectuer un virage au taux 1, puisqu’on ne pratique le taux 1 que jusqu’à 30° d’inclinaison ainsi que nous l’allons voir au paragraphe suivant.

Virages en IFR
Le MÉMENTO À L’USAGE DES UTILISATEURS DES PROCÉDURES DE VOL AUX INSTRUMENTS nous dit que dans l’établissement des procédures et des aires associées, les rayons de virage sont calculés pour une inclinaison de 25° ou un taux de virage de 3°/s (si l’inclinaison qui en résulte est inférieure à 25°).
Ça veut dire que si vous virez au taux 1, vous êtes protégés, mais si le taux 1 vous conduit à dépasser 25°, ce qui se produit si votre vitesse est supérieure à 170kt, vous resterez dans la protection si vous limitez votre inclinaison à 25°.
Si vous devez reprendre le pilotage manuel, une inclinaison supérieure à 30° commence à demander une attention particulièrement soutenue en vol sans visibilité, c’est pour cette raison que je conseille de ne pas incliner davantage que 30° en IFR. À 30°, vous avez en plus l’avantage d’une marge de sécurité, la protection étant calculée pour 25°.
Certains manuels suggèrent de limiter l’inclinaison à 25° pour le confort des passagers. À 25° le poids apparent est augmenté de 10%, à 30° de 15%. Je ne pense pas que l’augmentation du facteur de charge soit décisive pour le confort des passagers. Je pense qu’ils sont davantage impressionnés, s’il ont des repères visuels extérieurs, par le basculement du paysage, et de ce point de vue, je pense qu’une inclinaison de 30° n’est pas beaucoup plus impressionnante qu’une inclinaison de 25°. Je recommande donc de ne pas hésiter à incliner à 30°, et donc de garder le taux 1 jusqu’à 210kt.
Notez aussi que pour les départs initiaux et l’approche interrompue l’inclinaison considérée est de 15°. Les manœuvres à vue libres considèrent un angle de 20°.
Remarque : lors de l’exécution de manœuvres à vue imposées (VPT), il n’est pas tenu compte de la cadence à 3°/s et seule l’inclinaison de 25° est considérée.
Le document OACI 8168 dit pour les manœuvres à vue libres c) bank: 20° average achieved or the bank angle producing a turn rate of 3° per second, whichever is the lesser bank., et pour les manœuvres à vue imposées 25° average achieved bank angle.
Ça veut donc dire qu’il faut incliner à 25° au moins pour rester dans la protection pendant les manœuvres à vue imposées, même si ça conduit à un taux de virage supérieur à 1.

Rayon de virage au taux 1
En remplaçant, dans la formule du rayon de virage {{R}=\frac{V^2}{g \,\tan \alpha }}, α par sa valeur trouvée pour un virage au taux 1, on écrit
{{R}=\frac{V^2}{\frac{g . \pi . V }{1mn .\, g }}=\frac{1 mn V}{\pi}}
En convertissant une minute en un soixantième d’heure, et pour une vitesse en nœuds, le rayon de virage R, exprimé en milles marins, s’écrit {{R}=\frac{V}{60 \, \pi }\simeq\frac{V}{188 }}
Les manuels proposent la formule
{{\textbf R}\simeq\frac{\textbf V}{\textbf 2 \textbf 0 \textbf 0}} au lieu de {\frac{V}{188}} . C’est une approximation très commode pour le calcul mental. L’erreur due à cette approximation ne dépasse un vingtième de mille marin qu’au delà de 165kt et ne dépasse un dixième de mille marin qu’au delà de 330kt.

Par exemple, si vous êtes à 120kt de vitesse sol sur une procédure PBN qui demande un virage flyby à 90°, vous devez initier le virage au taux 1 120/200 =0,6 mille marin avant le point de virage. Certains manuels proposent de rajouter 0,1 mille marin pour tenir compte du temps de réaction, vous commencerez donc votre virage à 0,7 mille du point.

Attention, cette formule V/200 n’est valable que tant que vous effectuez vos virages au taux 1. Au delà de 210kt, votre inclinaison dépasse 30° au taux 1. Si vous plafonnez votre inclinaison à 30° au delà de 210kt, votre taux de virage sera inférieur à 1, la formule V/200 ne sera plus valable, il faudra utiliser la formule V/100-1 vue plus haut. Vous noterez que les deux formules donnent le même résultat (1NM) pour V=200kt, qui est à peu de chose près la vitesse à laquelle on incline de 30° au taux 1.

Fin des ILS sur les aéroports secondaires

La France entre dans la deuxième phase de l’implantation des approches GPS avec la disparition programmée des ILS sur les terrains secondaires, alors que d’autres pays n’en sont qu’au début, comme la Belgique qui n’a une approche GPS (à Anvers) que depuis fin 2015.
La liste a été publiée il y a quelques mois, et ça ira assez vite, avec notamment Melun le 3 mars prochain:
LFFA-E0235/16
A) LFPM MELUN VILLAROCHE B) 2016 Mar 03 00:00 C) 2016 Mar 16 23:59
E) NOTAM TRIGGER – AMDT AIRAC AIP PERM 03/16: ILS SUPPRIME. CARTES IAC SUPPRIMEES. CREATION CARTE APDC

Cette disparition progressive avait été annoncée de longue date, à mots couverts (rationalisation des moyens dans le jargon administratif), dans le plan PBN publié il y a quelques années déjà.
Il est notamment prévu de longue date dans ce plan PBN que la phase 2015-2019 verra le déploiement généralisé des approches RNAV (GNSS) sur l’ensemble des extrémités de piste des aérodromes IFR contrôlés et que cette phase devrait également voir se poursuivre le déploiement de procédures RNAV (GNSS) sur des aérodromes IFR non contrôlés.
On ne peut que se réjouir des économies dont bénéficieront les aéroports secondaires, et qui contribueront peut-être à leur maintien en activité.
Il reste que la formation reste très en retard: dans certains pays de l’EASA l’enseignement de l’IFR est toujours fait comme si le GPS n’avait pas été inventé.
La France de son coté considère que les nouveaux titulaires d’une qualification IFR n’ont pas le droit de suivre des approches GNSS sans formation ad hoc. Ce qui revient à admettre qu’on donne une qualification IFR à des pilotes incapables de suivre une approche GNSS, alors que dans le même temps on considère que l’approche GNSS est l’approche standard qui devrait être publiée par tout aérodrome IFR.

Vérifiez donc que votre ATO vous formera à faire des approches GNSS, sinon vous aurez une qualification IFR incomplète.